
v03 1v06

XCA
eXample Control Architecture

A tiny tutorial example that introduces key concepts of OCA,
the Open Control Architecture

rev 06 / 2020.05.14

XCA - Example Control Architecture

2v06

• XCA ("eXample Control Architecture") is a tutorial concept to introduce key concepts of OCA, the
Open Control Architecture.

• XCA is a highly simplified version of OCA.

• XCA is not meant to be implemented -!

• This following pages define XCA and show how it could be used for computer control of a simple
single-cup espresso machine.

XCA - Example Control Architecture

3v06v06 3

XCA

XCA - Example Control Architecture

4v06

Object Orientation

• XCA is an object-oriented control scheme. This means:

– A device is controlled by a set of control (/monitoring) objects.
– An object is a network interface.
– Each object defines a mini-API for network control of a device function.
– The device's network control API is simply the sum of the mini-APIs of all its objects.
– XCA objects are NOT software objects inside devices. They are network interface definitions only!

Device internal software structure is outside XCA's scope.

• What's in an XCA object?

1. Every object is identified by an object number that's unique within the device.
2. An object has three kinds of components:

a. One or more properties. A property is a device operating parameter.
b. One or more methods. A method is a procedure that a controller may call

to change a property value or do other things.
c. Zero or more events. An event is a tiny intelligence whose job is to notify a

controller of something that has happened: a property value has changed, a
state has changed, etcetera.

OBJECT

Properties

Methods

Events

Number

XCA - Example Control Architecture

5v06

Classes

• Objects are constructed from standard templates called control classes.

• The set of all XCA control classes is called the XCA control model.

• Each class's definition is based on the definition of another (parent) class, and is said to inherit the
elements of that class. One class has no parent - the root class, the common ancestor of all other classes.

• XCA is a simple example without many classes. They are:

xcaRoot the root class
xcaSwitch controls an n-position switch or n-position option selector
xcaFractionalValue controls a numeric value between 0 and 1
xcaTemperature controls a temperature setting
xcaStateSensor monitors an internal state
xcaFractionSensor monitors a numeric value between 0 and 1

• The next slide details the properties, methods, and events of these classes.

XCA - Example Control Architecture

6v06

Class Properties (c datatypes in italics) Methods Events

xcaRoot
string Name

readonly name of function in device
- All classes will inherit this property

GetName(Name)

xcaSwitch uint8 Position
range = 0...255

GetPosition(Position)
SetPosition(Position)

xcaTemperature float32 Value
any value

GetValue(Value)
SetValue(Value)

xcaStateSensor uint16 Value
range = 0...65536 GetReading(Reading)

PropertyChanged
notification sent to controller
when Reading changes value

xcaFloat32Sensor float32 Value GetValue(Value)
PropertyChanged

notification sent to controller
when Reading changes value

Class Details

XCA - Example Control Architecture

7v06v06 7

Protocols

XCA - Example Control Architecture

8v06

XCA Protocols: What actually goes along the wire?

• Each control object defines a mini-API.
• A device's network control API is the sum of the mini-APIs of all its objects.

• What's needed is a protocol that can handle XCA's mini-APIs.

1. Controller calls to XCA methods in devices Commands

2. XCA device responses to controller method calls Responses

3. Event messages from XCA devices to controllers Notifications

Recall

Therefore

Here's what
goes along

the wire

Any protocol that can reliably transport commands, responses, and notifications should work with XCA.

For now, let's just assume we have an appropriate XCA protocol.

For the curious, Appendix 1 shows how a protocol works with classes and objects.

XCA - Example Control Architecture

9v06v06 9

Example:
Single-Cup Espresso Machine

XCA - Example Control Architecture

10v06

Espresso Machine

Main tankbrew pump

C
on

tr
ol

P
an

el
C

on
tr

ol
 A

PI

XCA
mini-APIs

networkcontrol
microprocessor

XCA-controlled or
monitored function

cup size
select

brew
thermostat

water level
sensor

main power
relay

brew pump
relay

brew
status

XCA - Example Control Architecture

11v06

Espresso
Machine
Objects

Obj
Device Function Control Class Name How it works

1 Device off(0) / on(1) xcaSwitch (2 positions) MainPower Turns power on when set to 1

2 Tank water level xcaFloat32Sensor TankLevel Reads out water level. Value ranges
from 0 (empty) to 1 (full).

3 Brew status xcaStateSensor Status
0=power is off, 1=tank empty,
2=temp too low, 3=ready to brew,
4=brewing, 5=machine error

4 Brew pump off(0) / on(1) xcaSwitch Brew Turns brew pump on when set to 1

5 Brew water thermostat xcaTemperature BrewTemp Value determines setpoint of water level
thermostat.

6 Cup size select
(0, 1, 2, 3) xcaSwitch (4 positions) CupSize

Sets microcontroller software for desired
cup size.

XCA - Example Control Architecture

12v06

Espresso Machine, showing classes of XCA objects assigned to each control function.

Main tankbrew pump

C
on

tr
ol

P
an

el
C

on
tr

ol
 A

PI

XCA
mini-APIs

networkcontrol
microprocessor

XCA-controlled or
monitored function

cup size
select

xcaTemperature

xcaFloat32Sensor

brew
thermostat

water level
sensor

xcaSwitch<4>

xcaSwitch<2>

main power
relay

xcaSwitch<2>

brew pump
relay

brew
status

xcaStateSensor

XCA - Example Control Architecture

13v06v06 13

Further Reading

XCA - Example Control Architecture

14v06

Further reading

• Information on the real OCA and about AES70, the Audio Engineering Society media device control
standard based on OCA, can be found online, in these places:

– OCA Alliance general website, http://oca-alliance.com/

– OCA Alliance technical website:
• Downloads page, https://ocaalliance.github.io/downloads.html
• Developer Resources page, https://ocaalliance.github.io/resources.html

– Audio Engineering Society standards:
• AES70-1, AES70 Framework,
• AES70-2, AES70 Class Structure,
• AES70-3, AES70 Protocol for TCP/IP Networks.
Concise instructions for obtaining copies of these standards may be found at
https://ocaalliance.github.io/resources.html

http://oca-alliance.com/
https://ocaalliance.github.io/downloads.html
https://ocaalliance.github.io/resources.html
https://ocaalliance.github.io/resources.html

XCA - Example Control Architecture

15v06v05 15

Optional material for detail-oriented readers

Appendix 1:

How a protocol works with classes and objects

XCA - Example Control Architecture

16v06v06 16

How a
protocol
works
with
classes
and
objects

• Classes
define
objects.

• Objects
define
APIs.

• APIs
inform
the protocol.

Class XcaRoot
Property Name
Method GetName()

Class XcaSwitch
Property Position
Method GetPosition()
Method SetPosition()

Object 001
is created from

class XcaSwitch

Object 002
is created from

class XcaSwitch

class XcaSwitch
inherits from
class XcaRoot

XcaSwitch

Name "Right"
Position 1 or 2

1. GetName()
2. GetPosition()
3. SetPosition()

(no events)

002

XcaSwitch

1. GetName()
2. GetPosition()
3. SetPosition()

(no events)

001

002 1

002 2

002 3

001 1

001 2

001 3

CLASSES OBJECTS
channel mutes,
in this example

API PROTOCOL

001 1 (n)

(n) OK

002 3 (m)

(m)

2

OK

Obj No &
Method No

Sequence
No

"Left"

Get
object
name

Set
switch
Position

Controller
sends this

Device
returns this

Name "Left"
Position 1 or 2

Return
status

Result

Parameter:
New position value

XCA - Example Control Architecture

17v06v05 17

Optional material for detail-oriented readers

Appendix 2:

Selected operation sequences

XCA - Example Control Architecture

18v06v06 18

Operation Sequences - 1

– Startup

1. User starts espresso machine control app in computer connected to the espresso machine's network.

2. Control app finds espresso machine microprocessor on the network by magic.
*** Well ... not really by magic, but by a process we won't describe here.

3. Once connected to the espresso machine's microprocessor, controller calls Status.GetValue(...) to discover
machine status.

4. Depending on machine status, control app may
– Power up the machine using MainPower.SetValue(...)
– Ask the user to add water, and check the result using TankLevel.GetValue(...).
– Abort the operation, is machine status value is 5 (error).
– If operation is not aborted, controller repeats steps 1 and 2 until machine status value

is 3 (ready to brew).

5. If/when all is well, control app displays ready-to-brew message.

XCA - Example Control Architecture

19v06v06 19

Operation Sequences - 2

– Brewing

1. User selects cup size (or it defaults). Controller calls CupSize.SetValue(...) to inform the espresso machine
microcontroller of the chosen cup size.

2. User selects brewing temperature (or it defaults).
Control app calls BrewTemp.SetValue(...) to set the brew thermostat to the chosen temperature.

3. If necessary, control app calls Status.GetValue(...) to get machine status. Or control app may already know the status
from receiving Status.PropertyChanged notifications.

4. Water heats up. When machine status=3 (ready to brew), control app displays ready-to-brew message.

5. User clicks a BREW button on the control app screen.

6. Control app calls Brew.SetValue(...) to set the brew switch value to 2 (on).

7. Microcontroller sets Status.Value to 4 (brewing).

8. Pump starts. Brewing proceeds. Duration depends on cup size selected in step 1.

9. When brewing is done, the microcontroller turns the pump off and:
– sets Brew.Value to 0 (off).
– sets Status.Value to 3 (ready to brew).

10. Status object sends a PropertyChanged notification to the control app to report its value change.

11. On receiving this notification, the control app displays appropriate user messages, e.g. "Bon Appetito".

v03 20v06

Jeff Berryman
Bosch Communications Systems

ja.Berryman@us.bosch.com
+1 952 457 5445
US East Coast

	Slide Number 1
	Slide Number 2
	XCA
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Protocols
	Slide Number 8
	Example:�Single-Cup Espresso Machine
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Further Reading
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20

